124 research outputs found

    Fused Adjacency Matrices to enhance information extraction: the beer benchmark

    Get PDF
    Multivariate exploratory data analysis allows revealing patterns and extracting information from complex multivariate data sets. However, highly complex data may not show evident groupings or trends in the principal component space, e.g. because the variation of the variables are not grouped but rather continuous. In these cases, classical exploratory methods may not provide satisfactory results when the aim is to find distinct groupings in the data. To enhance information extraction in such situations, we propose a novel approach inspired by the concept of combining weak classifiers, but in the unsupervised context. The approach is based on the fusion of several adjacency matrices obtained by different distance measures on data from different analytical platforms. This paper is intended to present and discuss the potential of the approach through a benchmark data set of beer samples. The beer data were acquired using three spectroscopic techniques: Visible, near-Infrared and Nuclear Magnetic Resonance. The results of fusing the three data sets via the proposed approach are compared with those from the single data blocks (Visible, NIR and NMR) and from a standard mid-level data fusion methodology. It is shown that, with the suggested approach, groupings related to beer style and other features are efficiently recovered, and generally more evident

    A Metabolomic Approach to Beer Characterization

    Get PDF
    The consumers’ interest towards beer consumption has been on the rise during the past decade: new approaches and ingredients get tested, expanding the traditional recipe for brewing beer. As a consequence, the field of “beeromics” has also been constantly growing, as well as the demand for quick and exhaustive analytical methods. In this study, we propose a combination of nuclear magnetic resonance (NMR) spectroscopy and chemometrics to characterize beer. 1H-NMR spectra were collected and then analyzed using chemometric tools. An interval-based approach was applied to extract chemical features from the spectra to build a dataset of resolved relative concentrations. One aim of this work was to compare the results obtained using the full spectrum and the resolved approach: with a reasonable amount of time needed to obtain the resolved dataset, we show that the resolved information is comparable with the full spectrum information, but interpretability is greatly improved

    Monitoring Chemical Changes of Coffee Beans During Roasting Using Real-time NIR Spectroscopy and Chemometrics

    Get PDF
    Variations occurring in coffee beans during roasting are ascribable to several chemical-physical phenomena: to quickly track the whole process and to ensure its reproducibility, a process analytical technology (PAT) approach is needed. In this study, a method combining in-line Fourier transform near-infrared (FT-NIR) spectroscopy and chemometric modelling was investigated to get real-time and practical knowledge about the roasting effects on coffee’s chemical-physical composition. In-line spectra were acquired by inserting a NIR probe into a laboratory coffee roaster, running twenty-four roasting experiments, planned spanning different coffee species (Arabica and Robusta), four roasting temperature settings (TS1–TS4) and times (650–1580 s). Multivariate curve resolution-alternate least squares (MCR-ALS) was used to model the chemical-physical changes occurring during the roasting process, and information about maximum rate, acceleration and deceleration of the process was obtained, also highlighting potential effects due to the different roasting temperatures and coffee varieties. The proposed approach provides the groundwork for direct real-time implementation of rapid, non-invasive automated monitoring of the roasting process at industrial scale

    High throughput prediction of chylomicron triglycerides in human plasma by nuclear magnetic resonance and chemometrics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The lipid content of the chylomicrons is a key biomarker and risk factor of cardiovascular diseases and for the understanding of obesity. A high throughput determination of chylomicrons in human blood plasma is outlined.</p> <p>Methods</p> <p>The new method, which uses a combination of Nuclear Magnetic Resonance (NMR) analysis and multivariate calibration analysis (chemometrics), is based on a correlation analysis towards the established standard method (ultracentrifugation and colorimetric test kit) and enables extraordinarily fast, inexpensive, and robust prediction of triglyceride (TG) content in chylomicrons. It is the position and shape of the complex lipid methylene resonance band that determines the chylomicron TG status and this information is extracted by the multivariate regression method.</p> <p>Results</p> <p>The resulting method is a relatively simple multivariate model that facilitates parsimonious and accurate prediction of chylomicron lipids from NMR spectra of blood. The chemometric model predicts the chylomicron TG content with a correlation coefficient (R) of 0.96 when plotted against density gradient ultracentrifugation data.</p> <p>Conclusions</p> <p>The new rapid method facilitates large scale clinical and nutritional trials with inclusion of diagnostics of chylomicron status and thus creates new opportunities for research in lifestyle diseases and obesity.</p

    Metabolomics as a Powerful Tool for Molecular Quality Assessment of the Fish Sparus aurata

    Get PDF
    The molecular profiles of perchloric acid solutions extracted from the flesh of Sparus aurata fish specimens, produced according to different aquaculture systems, have been investigated. The 1H-NMR spectra of aqueous extracts are indicative of differences in the metabolite content of fish reared under different conditions that are already distinguishable at their capture, and substantially maintain the same differences in their molecular profiles after sixteen days of storage under ice. The fish metabolic profiles are studied by top-down chemometric analysis. The results of this exploratory investigation show that the fish metabolome accurately reflects the rearing conditions. The level of many metabolites co-vary with the rearing conditions and a few metabolites are quantified including glycogen (stress indicator), histidine, alanine and glycine which all display significant changes dependent on the aquaculture system and on the storage times

    Differentiation between Fresh and Thawed Cephalopods Using NIR Spectroscopy and Multivariate Data Analysis

    Get PDF
    The sale of frozen–thawed fish and fish products, labeled as fresh, is currently one of the most common and insidious commercial food frauds. For this reason, the demand of reliable tools to identify the storage conditions is increasing. The present study was performed on two species, commonly sold in large-scale distribution: Cuttlefish (Sepia officinalis) and musky octopus (Eledone spp.). Fifty fresh cephalopod specimens were analyzed at refrigeration temperature (2 ± 2°C), then frozen at −20°C for 10 days and finally thawed and analyzed again. The performance of three near-infrared (NIR) instruments in identifying storage conditions were compared: The benchtop NIR Multi Purpose Analyzer (MPA) by Bruker, the portable MicroNIR by VIAVI and the handheld NIR SCiO by Consumer Physics. All collected spectra were processed and analyzed with chemometric methods. The SCiO data were also analyzed using the analytical tools available in the online application provided by the manufacturer to evaluate its performance. NIR spectroscopy, coupled with chemometrics, allowed discriminating between fresh and thawed samples with high accuracy: Cuttlefish between 82.3–94.1%, musky octopus between 91.2–97.1%, global model between 86.8–95.6%. Results show how food frauds could be detected directly in the marketplace, through small, ultra-fast and simplified handheld devices, whereas official control laboratories could use benchtop analytical instruments, coupled with chemometric approaches, to develop accurate and validated methods, suitable for regulatory purposes
    • …
    corecore